Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Soil Ecology Letters ; 5(1):66-78, 2023.
Article in English | Scopus | ID: covidwho-2246635

ABSTRACT

Chlorine-containing disinfectants have been widely used around the world for the prevention and control of the COVID-19 pandemic. However, at present, little is known about the impact of residual chlorine on the soil micro-ecological environment. Herein, we treated an experimental soil-plant-microbiome microcosm system by continuous irrigation with a low concentration of chlorine-containing water, and then analyzed the influence on the soil microbial community using metagenomics. After 14-d continuous chlorine treatment, there were no significant lasting effect on soil microbial community diversity and composition either in the rhizosphere or in bulk soil. Although metabolic functions of the rhizosphere microbial community were affected slightly by continuous chlorine treatment, it recovered to the original status. The abundance of several resistance genes changed by 7 d and recovered by 14 d. According to our results, the chlorine residue resulting from daily disinfection may present a slight long-term effect on plant growth (shoot length and fresh weight) and soil micro-ecology. In general, our study assisted with environmental risk assessments relating to the application ofchlorine-containing disinfectants and minimization of risks to the environment during disease control, such as COVID-19. © 2022, Higher Education Press.

2.
Front Public Health ; 11: 1016938, 2023.
Article in English | MEDLINE | ID: covidwho-2246739

ABSTRACT

Introduction: During COVID-19, some front-line personnel experienced varying degrees of eye discomfort due to the use of goggles repeatedly disinfected with chlorine-containing disinfectant. Methods: The eye damage information of 276 front-line personnel who used goggles in a hospital from October 1, 2021, to December 1, 2021, was collected by filling out a questionnaire. To study the effect of chlorinated disinfectants on goggles, we immersed the goggles in the same volume of water and chlorinated disinfectant buckets. We tested the light transmittance, color and texture, and airtightness of the goggles at different times (1, 3, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192, 216, 240, and 268 h). In addition, we detected where chlorinated disinfectant remained in the goggles by using disinfectant concentration test paper. Results: 60 (21.82%) people experienced dry eyes, stinging pain, photophobia and tearing, conjunctival congestion, eyelid redness, and swelling. After treatment or rest, the patient's ocular symptoms were significantly relieved within 3 days. With the extension of disinfection time, the light transmission of the lenses gradually decreased, and the light transmission reduced when immersion occurred at 216 h. After 72 h of disinfection, the color of the goggle frame began to change to light yellow, the texture gradually became hard and brittle, and the color became significantly darker at 268 h of disinfection. The airtightness of the goggles began to decrease after 168 h of disinfection, the airtightness decreased substantially at 268 h, and the shape changed significantly. In addition, the concentration test paper results show that the disinfection solution mainly resides in the goggle frame seam and goggles' elastic bands' bundle. Conclusions: Repeated chlorine disinfectant disinfection will reduce the effectiveness of goggles protection and damage front-line personnel's eye health.


Subject(s)
COVID-19 , Disinfectants , Humans , Disinfectants/pharmacology , Chlorine , Eye Protective Devices , Immersion , COVID-19/prevention & control
3.
Build Environ ; 228: 109787, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2104463

ABSTRACT

Chlorine-containing disinfectants are widely used in hospitals to prevent hospital-acquired severe acute respiratory syndrome coronavirus 2 infection. Meanwhile, ventilation is a simple but effective means to maintain clean air. It is essential to explore the exposure level and health effects of coronavirus disease 2019 patients' inhalation exposure to by-products of chloride-containing disinfectants under frequent surface disinfection and understand the role of ventilation in mitigating subsequent airway damage. We determined ventilation dilution performance and indoor air quality of two intensive care unit wards of the largest temporary hospital constructed in China, Leishenshan Hospital. The chloride inhalation exposure levels, and health risks indicated by interleukin-6 and D-dimer test results of 32 patients were analysed. The mean ± standard deviation values of the outdoor air change rate in the two intensive care unit wards were 8.8 ± 1.5 h-1 (Intensive care unit 1) and 4.1 ± 1.4 h-1 (Intensive care unit 2). The median carbon dioxide and fine particulate matter concentrations were 480 ppm and 19 µg/m3 for intensive care unit 1, and 567 ppm and 21 µg/m3 for intensive care unit 2, all of which were around the average levels of those in permanent hospitals (579 ppm and 21 µg/m3). Of these patients, the median (lower quartile, upper quartile) chloride exposure time and calculated dose were 26.66 (2.89, 57.21) h and 0.357 (0.008, 1.317) mg, respectively. A statistically significant positive correlation was observed between interleukin-6 and D-dimer concentrations. To conclude, ventilation helped maintain ward air cleanliness and health risks were not observed.

SELECTION OF CITATIONS
SEARCH DETAIL